

Concular

21.11.2023

1

Die Baubranche ist einer der ressourcen- und abfallintensivsten Industrien.

36% der Treibhausemissionen

50% der Rohstoffentnahmen [2]

35% des gesamten Müllaufkommens

Alle Phasen des Lebenszyklus von Gebäuden, vom Bau bis zum Abbruch, wirken sich signifikant auf unsere Umwelt aus.

Das gängige lineare "Take-Make-Waste-Prinzip" ist nicht nachhaltig.

Dieser Studie adresseiert die Potenzielle des Kreislaufwirtschaft diese Problemfelde:

einen Blick auf die neuesten Trends der Kreislaufwirtschaft in Deutschland und der DACH-Region

konkrete Beispiele für Bauvorhaben nach den Prinzipien der Kreislaufwirtschaft

Aufklärung von bestehende zirkuläre Geschäftsmodelle in der DACH-Region

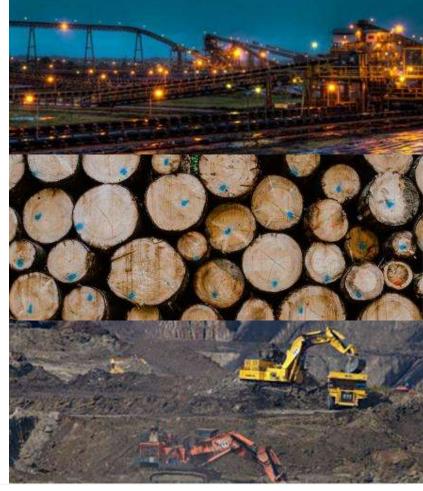
Herangehensweise

- 1 Umsetzung der Kreislaufwirtschaft im Bausektor mit dem Blick auf regulatorische Rahmenbedingungen
- 2 Spezifika der Zirkularität entlang der Lebenszyklusphasen von Gebäuden
- Zirkuläre Geschäftsmodelle für die Bauindustrie
- 4 Hemmnisse und Hebel für die Implementierung

Umsetzung der Kreislaufwirtschaft im Bausektor

Die Umsetzung von Kreislaufwirtschaft im Bauwesen weist einige besondere Merkmale auf

eine lange Lebensdauer


⇒ Kreislaufwirtschaft erfordert eine langfristige Planung und eine umfassende Berücksichtigung von Materialien und Ressourcen

ein Ressourcenintensität

⇒ Kreislaufwirtschaft erfordert diese Ressourcen effizient genutzt und recycelt werden, um Abfall und Umweltauswirkungen zu minimieren

Vielfalt von Baustoffen mit eigene Eigenschaften und Akteuren

⇒ Kreislaufwirtschaft erfordert die enge Zusammenarbeit und Koordination aller Beteiligten.

Regulatorischen Rahmen

Die Europäische Union hat in den letzten Jahren verstärkt die Bedeutung der Kreislaufwirtschaft im Bauwesen anerkannt und diverse politische und rechtliche Maßnahmen eingeleitet, um diesen Sektor nachhaltiger zu gestalten.

Besonders hervorzuheben ist zuletzt die EU-Taxonomie.

Durch die Taxonomie sollen Investitionen in nachhaltige Projekte gefördert werden, wobei sie auch klare Kriterien für nachhaltiges Bauen festlegt.

Die EU-Taxonomie verfolgt sechs übergeordnete Umweltziele:

- Klimaschutz
- 2. Anpassung an den Klimawandel
- 3. Nachhaltiger Einsatz und Gebrauch von Wasser oder Meeresressourcen
- 4. Übergang zu einer Kreislaufwirtschaft
- 5. Vorbeugung oder Kontrolle von Umweltverschmutzung
- 6. Schutz und Wiederherstellung von Biodiversität und Ökosystemen

Die Nachhaltigkeit der gesamten Geschäftstätigkeit eines jeden Unternehmens muss ab Ende 2021 jährlich berichtet werden, in der Regel als Teil des Sustainability Reports oder Annual Reports.

Das gilt für alle Unternehmen, die Finanzprodukte in der EU vertreiben und auch für große Unternehmen (>500 Mitarbeiter), welche unter die nicht-finanzielle Berichterstattung (non-financial reporting directive NFRD) fallen.

Durch die Kategorisierung der unterschiedlichen Lebenszyklusphasen können spezifische Umweltauswirkungen systematisch analysiert werden.

	Material- und Bauteilherstellung			Bau- ausführung		Nutzungsphase						Entsorgungsphase				
A0	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
Planung	Rohstoffbereitstellung	Transport	Herstellung	Transport	Bau / Einbau	Nutzung	Inspektion, Wartung, Reinigung	Reparatur	Austausch, Ersatz	Verbesserung, Modernisierung	Betrieblicher Energieeinsatz	betrieblicher Wassereinsatz	Abbruch	Transport	Abfallbewirtschaftung	Deponierung
		ER	GÄNZE	NDE INI	FORMA	TIONE	N AUSS	ERHAL	B DES	LEBENS	SZYKLU	S DES	GEBÄU	DES		
								D								
				Gı	utschift	en und	Lasten	außeri	halb de	r Syste	mgrenz	en				

Mit der Einführung der Prinzipien der Kreislaufwirtschaft sind in den Lebenszyklusphasen spezifische Anpassungen verbunden, um sicherzustellen, dass die Grundsätze der Kreislaufwirtschaft umgesetzt werden

In einer Kreislaufwirtschaft ergeben sich im Gegensatz zur linearen Wirtschaft folgende Unterschiede, die wesentliche Merkmale bei dem Geschäftsmodellen sind

Planung und Herstellung

Entwurf für Demontage

Modulares Bauen

Langlebigkeit

Low-Tech-Entwurf

Adaptivität

Ökobilanzierung

Recycelte und wiederverwendete

Materialien

Biobasierten und erneuerbaren Materialien

Bauausführung

Emissions- und Abfallvermeidung

3D-Druck

Transport und Lagerung

Digitalisierung des Materialbestands

Nutzungsphase

Gebäuderessourcenpass

Restwert für die Eigentümerinnen und Eigentümer

Technologien für effizientes Gebäudemanagement

Synergien in der Energieerzeugung

Geschlossenes Wasseraufbereitungssyste m

Nutzung von Abwärme

Entsorgungsphase

Materialien für eine neue Verwendung vorbereiten

Zertifizierung von wiederverwendeten Materialien

Vor-Abriss-Prüfung und kontrollierter Rückbau

In einer Kreislaufwirtschaft ergeben sich im Gegensatz zur linearen Wirtschaft folgende Unterschiede, die wesentliche Merkmale bei dem Geschäftsmodellen sind

Planung und Herstellung

Entwurf für Demontage

Modulares Bauen

Langlebigkeit

Low-Tech-Entwurf

Adaptivität

Ökobilanzierung

Recycelte und

wiederverwendete

Materialien

Biobasierten und

erneuerbaren Materialien

Bauausführung

Emissions- und Abfallvermeidung

3D-Druck

Transport und Lagerung

Digitalisierung des Materialbestands

Nutzungsphase

Gebäuderessourcenpass

Restwert für die Eigentümerinnen und Eigentümer

Technologien für effizientes Gebäudemanagement

Synergien in der Energieerzeugung

Geschlossenes Wasseraufbereitungssyste

m

Nutzung von Abwärme

Entsorgungsphase

Materialien für eine neue Verwendung vorbereiten

Zertifizierung von wiederverwendeten Materialien

Vor-Abriss-Prüfung und kontrollierter Rückbau

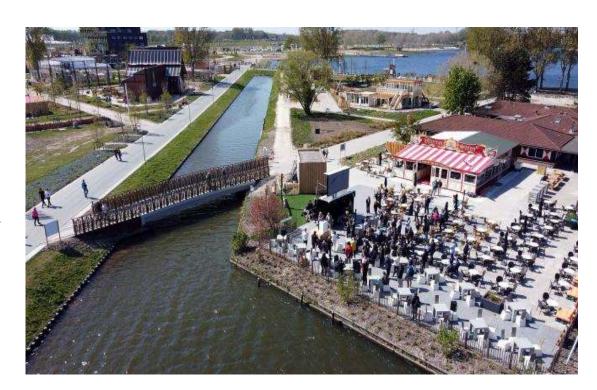
Recycelte und wiederverwendete Materialien

ReCreate

Das von der EU-geförderte H2020-Projekt beschäftigt sich mit der Frage, ob und wie Stahlbetonfertigteile wiederverwendet werden können.

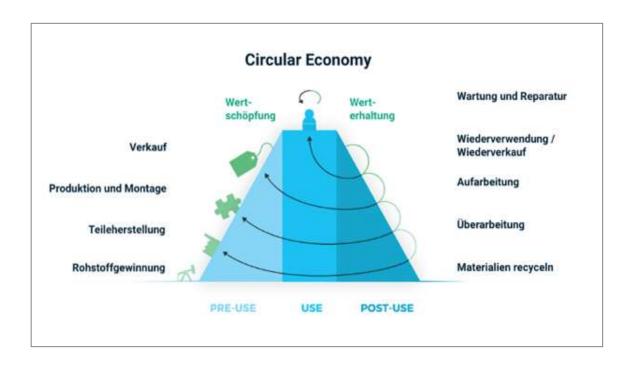
Im Rahmen von vier Pilotprojekten in Deutschland, Finnland, den Niederlanden und Schweden, wird das nicht nur theoretisch, sondern anhand von realen Bauvorhaben demonstriert.

Neben den technisch-planerischen Fragen, werden auch ökonomische, ökologische und soziale Aspekte untersucht.


Biobasierten und erneuerbaren Materialien

Smart Circular Bridge

Entwurf und Realisierung von Fußgängerbrücken in den Niederlanden und Deutschland aus bio-basierten Verbundwerkstoffen, in diesem Fall Flachs


Integration von einem Bauwerksmonitoringsystem mit Glasfasersensoren zur Kontrolle des Materialverhaltens in Echtzeit.

Aktuell laufen weitere Untersuchungen zur Recyclingfähigkeit der verwendeten Materialien.

Zirkuläre Geschäftsmodelle: Wertgenerierung im Fokus

Planung

Material & Bauteilherstellung

Bauausführung

Nutzungsphase

Entsorgungsphase

Zirkuläre Geschäftsmodelle entlang der Lebenszyklusphasen für Gebäude

Value Hill	Phasen	Geschäftsmodellen				
Value Creation –	Planung	1. Grünes Gebäudedesign				
Wertschöpfung	Fiditions	2. Advanced Design Software und Datenmanagement				
	Material & Bauteilherstellung	3. Circular-Supply-Geschäftsmodelle				
	Bauausführung	4. Ressourceneffizientes Bauen				
Value Transfer – Wertübertragung		5. Produkt-Dienstleistungs-Systeme (PSS-Modelle)				
Weitubeitiagang	Nutzungsphase	6. Nutzungsdauerverlängerung				
Value Capture –		7. Umnutzung und Aufstockung				
Werterhaltung	Entsorgungsphase	8. Material-Marktplätze				
		9. Materialrückgewinnung und Recycling				

Zirkuläre Geschäftsmodelle entlang der Lebenszyklusphasen für Gebäude

Value Hill	Phasen	Geschäftsmodellen				
Value Creation -	Planung	1. Grünes Gebäudedesign				
Wertschöpfung	Fiditioning	2. Advanced Design Software und Datenmanagement				
	Material & Bauteilherstellung	3. Circular-Supply-Geschäftsmodelle				
	Bauausführung	4. Ressourceneffizientes Bauen				
Value Transfer – Wertübertragung		5. Produkt-Dienstleistungs-Systeme (PSS-Modelle)				
Wertubertrugung	Nutzungsphase	6. Nutzungsdauerverlängerung				
Value Capture -		7. Umnutzung und Aufstockung				
Werterhaltung	Entsorgungsphase	8. Material-Marktplätze				
		9. Materialrückgewinnung und Recycling				

Ressourceneffizientes Bauen

Geschäftsmodelle für ressourceneffizientes Bauen zielen darauf ab, den Materialverbrauch durch verschiedene innovative Ansätze zu reduzieren:

- 3D-Druck,
- Vorfertigung,
- modulare, serielle und zirkuläre Bausysteme

Modulare, serielle und zirkuläre Bausysteme

- Kreislaufgerechte Holzsysteme
- Mineralische Bausysteme

Aspekte der Zirkularität: Emissions- und Abfallvermeidung während des Baus, Transport und Lagerung, reversible Verbindungssysteme, Entwurf für Demontage, Modulares Bauen

WS16, Modul von TRIQBRIQ

SEMBLA, Mineralische Bausysteme

Produkt-Dienstleistungs-Systeme (PSS-Modelle)

Einsparungen bei natürlichen Ressourcen und Flächenverbrauch durch intensive Nutzung:

- Nutzungsintensivierung
- Leistungsbasierte Dienstleistungsmodelle

Leistungsbasierte Dienstleistungsmodelle

Anstelle von herkömmlichen Marketingansätzen für hergestellte Güter oder Vermögenswerte vermarkten Unternehmen, die solche Modelle übernehmen, die Dienstleistungen oder Ergebnisse, die durch diese Güter erbracht werden

- Light-as-a-Service
- Heizung-as-a-Service
- Furniture-as-a-Service

As-a-Service-Modelle gibt es heute insbesondere in der Haustechnik und im Innenausbau. Das Konzept ist tendenziell für viele Produktarten denkbar, wie zum Beispiel Fassaden, Böden, Dach und sogar konstruktive Gebäudeteile

NORNORM

Hemmnisse für die Implementierung

Wirtschaftlich

- Risiken für die Entwicklung neuer Materialien im Rahmen von Circular-Supply-Geschäftsmodellen
- Fehlende Anreize für Grünes Gebäudedesign
- Kostentreibende Faktoren, mangelnde Marktakzeptanz und fehlende Strukturen für Material-Marktplätze

Organisatorisch

- Datenverfügbarkeit
- Materialverfügbarkeit
- Koordination aller Stakeholder

Technologisch

- Unbekannte Materialeigenschaften zirkulärer Baumaterialien
- Nicht immer ausreichende Kenntnisse beim selektiven Rückbau

Regulatorisch

- Fehlende Standards und unklare Haftungsfragen

Hebel für die Implementierung

Wirtschaftlich

- Externe Fördermaßnahmen und strukturelle Veränderungen sind erforderlich, wie beispielsweise nationale Förderprogramme oder eine CO2-Bepreisung
- Eine verbesserte Koordination von Demontageprozessen zwischen verschiedenen Akteuren
- Eine genaue Erfassung von Bauelementen sowie die Einführung einer systematischen Verfügbarkeitsüberwachung

Organisatorisch

 Entwicklung von Plattformen zum Austausch von Materialien und Bauteilen

Technologisch

- BIM-Unterstützung kann den Planungsprozess von nachhaltigen Gebäuden erleichtern

Regulatorisch

Regelungen wie die EU-Taxonomie werden die Nachfrage erh\u00f6hen

Fragen?

Vielen Dank

Dina Padalkina Circular Berlin

dina@circular.berlin

Prof. Dr. Patrick Teuffel Circular Structural Design

patrick@circular-structural-design.eu

Julius Schäufele Concular

julius@concular.com

